Skip to content

Installation

Detailed instructions for installing DeepChopper on Linux, macOS, and Windows.

This guide covers multiple installation methods, GPU setup, and troubleshooting common issues.

Requirements

  • Python: 3.10 or later
  • Operating System: Linux, macOS, or Windows
  • Storage: At least 2GB free space for the package and models
  • Memory: Minimum 8GB RAM (16GB+ recommended for large datasets)
  • Optional: NVIDIA GPU with CUDA support for acceleration

Quick Installation

The easiest way to install DeepChopper is via pip:

pip install deepchopper

Verify Installation

Check that DeepChopper is installed correctly:

deepchopper --help

You should see the command-line help information.

Installation Methods

This is the simplest method for most users:

# Create a virtual environment (recommended)
python -m venv deepchopper_env
source deepchopper_env/bin/activate  # On Windows: deepchopper_env\Scripts\activate

# Install DeepChopper
pip install deepchopper

# Verify installation
deepchopper --version

Method 2: Using conda/mamba

If you prefer conda for package management:

# Create a new conda environment
conda create -n deepchopper python=3.10
conda activate deepchopper

# Install DeepChopper
pip install deepchopper

Method 3: Development Installation

For developers who want to contribute or modify the source code:

# Install uv package manager
pip install uv

# Clone the repository
git clone https://github.com/ylab-hi/DeepChopper.git
cd DeepChopper

# Install dependencies
uv sync

# Build and install in development mode
maturin develop --release

# Run tests to verify
uv run pytest tests -k "not slow"

For more details, see the Contributing Guide.

Platform-Specific Instructions

Linux

DeepChopper works on most modern Linux distributions:

# Ubuntu/Debian
sudo apt-get update
sudo apt-get install python3.10 python3-pip

# Fedora/CentOS/RHEL
sudo dnf install python3.10 python3-pip

# Install DeepChopper
pip install deepchopper

macOS

# Install Python using Homebrew (if needed)
brew install python@3.10

# Install DeepChopper
pip install deepchopper

Apple Silicon (M1/M2/M3)

DeepChopper has native support for Apple Silicon Macs. No special configuration needed!

Windows

# Open PowerShell or Command Prompt
# Ensure Python 3.10+ is installed

# Create virtual environment
python -m venv deepchopper_env
deepchopper_env\Scripts\activate

# Install DeepChopper
pip install deepchopper

GPU Support

DeepChopper can leverage NVIDIA GPUs for faster processing:

CUDA Setup

# Install PyTorch with CUDA support
# Check https://pytorch.org for the latest CUDA-compatible version
pip install torch --index-url https://download.pytorch.org/whl/cu121

# Install DeepChopper
pip install deepchopper

# Verify GPU is available
python -c "import torch; print(f'CUDA available: {torch.cuda.is_available()}')"

Using GPUs with DeepChopper

# Use GPU for prediction
deepchopper predict data.parquet --gpus 1

# Use multiple GPUs
deepchopper predict data.parquet --gpus 2

Compatibility Matrix

Python Version Linux x86_64 macOS Intel macOS Apple Silicon Windows x86_64
3.10
3.11
3.12

Upgrading DeepChopper

To upgrade to the latest version:

pip install --upgrade deepchopper

Check the changelog for new features and bug fixes.

Troubleshooting

Common Issues

Issue: command not found: deepchopper

Solution: Ensure the installation directory is in your PATH:

# Check where pip installs packages
pip show deepchopper

# Add to PATH (in ~/.bashrc or ~/.zshrc)
export PATH="$HOME/.local/bin:$PATH"

Issue: Import errors or missing dependencies

Solution: Reinstall in a clean virtual environment:

# Remove old environment
rm -rf deepchopper_env

# Create fresh environment
python -m venv deepchopper_env
source deepchopper_env/bin/activate
pip install --upgrade pip
pip install deepchopper

Issue: Slow performance without GPU

Solution: Install GPU-enabled PyTorch:

# For CUDA 12.1
pip install torch --index-url https://download.pytorch.org/whl/cu121

Issue: Out of memory errors

Solution: Use chunking for large datasets:

# Process in smaller chunks
deepchopper chop predictions raw.fq --chunk-size 1000

Additional Prerequisites

Some analyses may require additional tools:

Uninstalling

To completely remove DeepChopper:

pip uninstall deepchopper

Getting Help

If you encounter issues not covered here:

  1. Check the FAQ
  2. Search existing issues
  3. Open a new issue with:
  4. Your OS and Python version
  5. Full error message
  6. Steps to reproduce

Next Steps

  • Follow the Tutorial for a complete walkthrough
  • Read the CLI Reference for all available commands
  • Check the FAQ for common questions