Installation¶
Detailed instructions for installing DeepChopper on Linux, macOS, and Windows.
This guide covers multiple installation methods, GPU setup, and troubleshooting common issues.
Requirements¶
- Python: 3.10 or later
- Operating System: Linux, macOS, or Windows
- Storage: At least 2GB free space for the package and models
- Memory: Minimum 8GB RAM (16GB+ recommended for large datasets)
- Optional: NVIDIA GPU with CUDA support for acceleration
Quick Installation¶
The easiest way to install DeepChopper is via pip:
Verify Installation¶
Check that DeepChopper is installed correctly:
You should see the command-line help information.
Installation Methods¶
Method 1: Using pip (Recommended)¶
This is the simplest method for most users:
# Create a virtual environment (recommended)
python -m venv deepchopper_env
source deepchopper_env/bin/activate # On Windows: deepchopper_env\Scripts\activate
# Install DeepChopper
pip install deepchopper
# Verify installation
deepchopper --version
Method 2: Using conda/mamba¶
If you prefer conda for package management:
# Create a new conda environment
conda create -n deepchopper python=3.10
conda activate deepchopper
# Install DeepChopper
pip install deepchopper
Method 3: Development Installation¶
For developers who want to contribute or modify the source code:
# Install uv package manager
pip install uv
# Clone the repository
git clone https://github.com/ylab-hi/DeepChopper.git
cd DeepChopper
# Install dependencies
uv sync
# Build and install in development mode
maturin develop --release
# Run tests to verify
uv run pytest tests -k "not slow"
For more details, see the Contributing Guide.
Platform-Specific Instructions¶
Linux¶
DeepChopper works on most modern Linux distributions:
# Ubuntu/Debian
sudo apt-get update
sudo apt-get install python3.10 python3-pip
# Fedora/CentOS/RHEL
sudo dnf install python3.10 python3-pip
# Install DeepChopper
pip install deepchopper
macOS¶
# Install Python using Homebrew (if needed)
brew install python@3.10
# Install DeepChopper
pip install deepchopper
Apple Silicon (M1/M2/M3)
DeepChopper has native support for Apple Silicon Macs. No special configuration needed!
Windows¶
# Open PowerShell or Command Prompt
# Ensure Python 3.10+ is installed
# Create virtual environment
python -m venv deepchopper_env
deepchopper_env\Scripts\activate
# Install DeepChopper
pip install deepchopper
GPU Support¶
DeepChopper can leverage NVIDIA GPUs for faster processing:
CUDA Setup¶
# Install PyTorch with CUDA support
# Check https://pytorch.org for the latest CUDA-compatible version
pip install torch --index-url https://download.pytorch.org/whl/cu121
# Install DeepChopper
pip install deepchopper
# Verify GPU is available
python -c "import torch; print(f'CUDA available: {torch.cuda.is_available()}')"
Using GPUs with DeepChopper¶
# Use GPU for prediction
deepchopper predict data.parquet --gpus 1
# Use multiple GPUs
deepchopper predict data.parquet --gpus 2
Compatibility Matrix¶
| Python Version | Linux x86_64 | macOS Intel | macOS Apple Silicon | Windows x86_64 |
|---|---|---|---|---|
| 3.10 | ✅ | ✅ | ✅ | ✅ |
| 3.11 | ✅ | ✅ | ✅ | ✅ |
| 3.12 | ✅ | ✅ | ✅ | ✅ |
Upgrading DeepChopper¶
To upgrade to the latest version:
Check the changelog for new features and bug fixes.
Troubleshooting¶
Common Issues¶
Issue: command not found: deepchopper¶
Solution: Ensure the installation directory is in your PATH:
# Check where pip installs packages
pip show deepchopper
# Add to PATH (in ~/.bashrc or ~/.zshrc)
export PATH="$HOME/.local/bin:$PATH"
Issue: Import errors or missing dependencies¶
Solution: Reinstall in a clean virtual environment:
# Remove old environment
rm -rf deepchopper_env
# Create fresh environment
python -m venv deepchopper_env
source deepchopper_env/bin/activate
pip install --upgrade pip
pip install deepchopper
Issue: Slow performance without GPU¶
Solution: Install GPU-enabled PyTorch:
Issue: Out of memory errors¶
Solution: Use chunking for large datasets:
Additional Prerequisites¶
Some analyses may require additional tools:
- Dorado: For basecalling POD5 files (installation guide)
- Samtools: For BAM/FASTQ conversion (installation guide)
Uninstalling¶
To completely remove DeepChopper:
Getting Help¶
If you encounter issues not covered here:
- Check the FAQ
- Search existing issues
- Open a new issue with:
- Your OS and Python version
- Full error message
- Steps to reproduce
Next Steps¶
- Follow the Tutorial for a complete walkthrough
- Read the CLI Reference for all available commands
- Check the FAQ for common questions